MechasFluid
PIPE IN SERIES
Monday, 25 May 2015 | 23:26 | 0 comment(s)
If a pipeline is joined to one or more pipelines in
continuation, these are said to constitute pipes in series. A typical example
of pipes in series is shown in Fig. 36.1. Here three pipes A, Band C are joined in series.
In this case, rate of flow Q remains same in each
pipe. Hence,
QA = QB = QC = Q
If the total head available at Sec. 1 (at the inlet
to pipe A) is which is H1 greater than H2, the total head
at Sec. 2 (at the exit of pipe C), then the flow takes place from 1 to 2
through the system of pipelines in series.
Application of Bernoulli's equation between Secs.1
and 2 gives
The subscripts A, B and C efer
to the quantities in pipe A, B and C respectively. Cc is the coefficient of
contraction.
The flow rate Q satisfies the equation:
CONCLUSION
Piping systems are documented in piping and instrumentation diagrams (P&IDs). If necessary, pipes can be cleaned by the tube cleaning process. Within industry, piping is a system of pipes used to convey fluids (liquids and gases) from one location to another. The engineering discipline of piping design studies the efficient transport of fluid.
"Piping" sometimes refers to Piping Design, the detailed specification of the physical piping layout within a process plant or commercial building. In earlier days, this was sometimes called Drafting, Technical drawing, Engineering Drawing, and Design but is today commonly performed by Designers who have learned to use automated Computer Aided Drawing / Computer Aided Design (CAD) software.
Plumbing is a piping system with which most people are familiar, as it constitutes the form of fluid transportation that is used to provide potable water and fuels to their homes and businesses. Plumbing pipes also remove waste in the form of sewage, and allow venting of sewage gases to the outdoors. Fire sprinkler systems also use piping, and may transport nonpotable or potable water, or other fire-suppression fluids.
Piping also has many other industrial applications, which are crucial for moving raw and semi-processed fluids for refining into more useful products. Some of the more exotic materials of construction are Inconel, titanium, chrome-moly and various other steel alloys.
REFERENCES
-Çengel, A. Yusof. Cimbala, M. John (2014). Fluid Mechanics. Singapore: Mc Graw Hill Education
-Douglas J. F. 2005. Fluid Mechanics. Pearson 5th Edition.
-Sturm T. W. 2001. Open Channel Hydraulics; McGraw-Hill. UK.
-Jain S. C. 2001. Open Channel Flow. John Wiley & Sons.
-Chin D.A. 2000. Water Resources Engineering. Prentice Hall.
-Subramanya K., 1997. Flow in Open Channels. Tata McGraw-Hill, New Delhi.
-Fluid Mechanics Module, Penerbit UTHM, Noor Aliza Ahmad, Roslinda Seswoya & Zarina Md Al
-(2009, Nov). Fluid Mechanics. Retrieved from http://en.wikipedia.org/wiki/Fluid_mechanics
-(2015,May). Pipe network analysis. Retrieved from http://en.wikipedia.org/wiki/Pipe_network_analysis
-(2011, June). Branching pipe. Retrieved from http://www.unimasr.net/
-(2010, August). Pipe in series and parallel. Retrieved from http://nptel.ac.in/courses/112104118/lecture-36/36-1_flow_through_branched_pipe.htm
GROUP MEMBERS